

Introduction

Product Facts

- Available in 2, 3 and 9 circuit configurations for panel mounting; 4, 9 and 18 circuit configurations for free-hanging applications.
- Standard natural colored polyamide housings.
- Housings fully polarized.
- Contacts fully protected in housings.
- Contacts accept wire size range 0.5–5.0 mm² (20–10 AWG) with insulation diameters from 2.5 to 4.6 mm.
- Dual locking lances assure optimum contact stability.
- Extraction tool removes both pins and sockets.
- Contacts are on 6.09 mm centerline spacing.
- Not for interrupting current.
- Recognized under the Component Program of Underwriters Laboratories, Inc., ® File No. E28476.
- Certified by Canadian Standards Association, File No. LR 7189 A.

SP.®

N-LOK connectors with 3.5 mm diameter pins and sockets, have a 25 A current carrying capacity and are capable of accepting wire with insulation diameters up to 4.5 mm. Both pins and sockets are equipped with dual locking lances, which assure positive contact retention when installed in the housings.

This versatile family of TE Connectivity connectors offers a wide selection of sizes and configurations.

A few of the many available versions include connectors for free-hanging applications, special versions including those for mixed loading, which have been used in the automotive industry for years.

Technical Data

Technical Features

The .140 (3.5 mm) MATE-N-LOK Connector performance characteristics are based on free-hanging and panel mount connectors, loaded with contacts crimped on stranded wire. **Dielectric Withstanding Voltage:** 3.0 kV AC between adjacent circuits

Insulation Resistance: 1000 megohms minimum initial between adjacent circuits

Voltage Rating: 250 V AC or DC Connector Mating: 20 N max. per circuit Connector Unmating: 3.6 N min. per circuit

Contact Retention: 133.5 N min. Durability: 25 cycles max., mating and unmating Temperature Range: -55 °C to +105 °C

Thermal Shock: -55 °C to +85 °C Temperature-Humidity Cycling: +25 °C to +65 °C at 95 % Relative Humidity

Technical Documents

Product Specification: 108-1032 for Connectors Application Specification: 114-1007 for Contacts

Performance Characteristics

Maximum Current

Maximum current rating of .140 MATE-N-LOK connectors is limited by the maximum operating temperature of the housings which is +105 °C and the temperature rise of the contacts which is +30 °C. There are several variables which have a direct effect on this maximum currentcarrying capability for a given connector and must be considered for each application. These variables are:

Wire Size

Larger diameter wire will carry more current since it has less internal resistance to current flow and thus generates less heat. Longer wire lengths enhance current carrying capabilities since the wire conducts heat away from the connector.

Connector Size

In general, the more circuits in a connector, the less current can be carried.

Ambient Temperature

The higher the ambient temperature, the less current can be carried in any given connector.

Technical Data (continued)

Current Rating Verification for 30 °C max. Temperature Rise, 100% Energized

Wire-to-Wire

.140 MATE-N-LOK - Calculated Current Table (A)

	Wire Size								
No. of Circuits	(AWG)	10	12	14	16	18	20		
onouno	(mm²)	5,0	3,0	2,0	1,2	0,8	0,5		
2		28,0	23,0	18,5	15,0	13,5	10,5		
3		25,0	21,0	17,0	13,5	12,0	9,5		
9		18,5	15,0	12,0	10,0	9,0	7,0		

Values are based on initial Temperature Rise versus Current Testing and are intended to be a guide in the selection of a connector family. All applications should be tested by the end user. The values listed are per circuit for fully loaded housings being 100 % energized.

Note: All combinations were not tested, and this chart contains interpolated and extrapolated values.

Wire	Size	Wire Length
(AWG)	(mm²)	(mm)
20	0.5	200
18	0.8	240
16	1.2	290
14	2.0	350
12	3.0	420
10	5.0	490

Minimum Wire Lengths for Temperature Rise vs. Current Testing

Note: If wire lengths used are less than those listed above, the current carrying ability of the system will be reduced due to less heat being conducted away from the connector. The customer should fully test all applications.

Termination Resistance/Contact Crimp Tensile Force

Wire Size Range (AWG) (mm ²)		Terminatio	Contact Crimp	
		Test Current (A)	Resistance* (m Ω) (max. Init)	Tensile Force (N) min.
20	0.5	4.5	3.0	89
18	0.8	6.0	2.5	133
16	1.2	8.0	2.5	200
14	2.0	10.00	2.0	222
12	3.0	12.00	1.5	267
10	5.0	14.00	1.5	289

*) Note: This is the total resistance between wire crimps of a mated pin and socket.

Socket Contacts, 3.5 mm Diameter

Wire Size Range: 0.5 up to 5.3 mm²

Insulation Diameter: 4.5 mm max.

Contact Material: CuZn or CuSn

Contact Finish: Pre-tin plated

Current Carrying Capacity: Up to 25 A per contact, depending on number of positions, wire size and ambient temperature

Temperature Range: -55 °C to +105 °C

Product Specification: 108-1032

Application Specification: 114-1007

Extraction Tool: Part No. 539764-1

Socket Contacts

Wire Size	Insulation	Socket	Material			Part Nu	umbers			
Range (mm ²)	Diameter (mm)	L (mm)	and Finish	Strip Form	Package Quantity	Loose- Piece	Package Quantity	Applicator	Hand Tool	
0.5-1.0	1.4–2.3	20.0	CuSn, pre-tin plated	927843-2	7,500	927844-2	2,500	1855490-x	2063577-1	
0.5-1.0	2.0–2.7	20.0	CuSn, pre-tin plated	927818-2	7,500	927819-2	500	680708-x	-	
0.5–1.5		20.0	CuZn, pre-tin plated	926986-1	7,500	_	-	680331-x	2063535-1	
0.5–1.5 1.2–2.4	20.0	CuSn, pre-tin plated	926986-2	7,500	_	-	000331-X	2003335-1		
			20.0	CuZn, pre-tin plated	925714-1	7,500	925661-1	500	1385797-x	2063535-1
0.5-2.1	2.5-4.5		CuSn, pre-tin plated	925714-2	7,500	925661-2	900	1363797-X	2003335-1	
0.5-2.1	2.0-4.0	2.5–4.522.0	St4 K 50, CuSn	925932-5*	7,500	925933-5 *	500	on request	-	
		20.0	CuSn, silver plated	925851-2**	7,500	925866-2**	500	on request	_	
>1.0-2.5	2.1–3.1	20.0	CuSn, pre-tin plated	927860-2	7,500	927861-2	1,000	677829-x	_	
>1.0-2.5	2.7-4.0	20.0	CuSn, pre-tin plated	927875-2	7,500	-	-	680709-x	_	
0150	2.5-4.5	20.0	CuZn, pre-tin plated	925712-1	7,500	925663-1	500	690110 v		
2.1–5.3	2.5–4.5	20.0	CuSn, pre-tin plated	925712-2	7,500	925663-2	500	680112-x	_	

*) For Ambient Temperatures up to +120 °C and 17 Ampere

**) Without Locking Lance

Pin Contacts, 3.5 mm Diameter

Pin Contacts

Wire Size	Insulation	Socket	Material			Part Nu	umbers	ers			
Range Diameter (mm ²) (mm)	L (mm)	and Finish	Strip Form	Package Quantity	Loose- Piece	Package Quantity	Applicator	Hand Tool			
0.5–1.0	1.4–2.3	25.0	CuSn, pre-tin plated	927841-2	7,500	927842-2	2,000	1855490-x	2063577-1		
0.5–1.5 1.2–2.4	25.0	CuZn, pre-tin plated	926988-1	7,500	926989-1	2,000	680331-x	2063535-1			
	4 25.0	CuSn, pre-tin plated	926988-2	7,500	926989-2	2,000	660331-X	2003333-1			
		25.0	CuZn, pre-tin plated	925715-1	7,500	925660-1	500				
	0 5 4 5	2.5–4.5 <u>25.0</u> 26.6	CuSn, pre-tin plated	925715-2	7,500	925660-2	500	1385797-x	2063535-1		
0.5–2.1	2.5-4.5		St4 K 50, pre-tin plated	925715-5 *	7,500	925660-5*	500				
			St4 K 50, pre-tin plated	925960-1 **	7,500	925961-1 **	500	on request	-		
>1.0-2.5	2.1–3.1	25.0	CuSn, pre-tin plated	927858-2	7,500	927859-2	500	677829-x	-		
2.7–4.0	25.0	CuSn, pre-tin plated	927873-2	10,000	927874-2	500	680709-x	-			
0150		CuZn, pre-tin plated	925713-1	7,500	925662-1	500	000110				
2.1–5.3 2.5	2.5–4.5	25.0	CuSn, pre-tin plated	925713-2	7,500	925662-2	500	680112-x			

*) For Ambient Temperatures up to +120 °C and 17 Ampere
**) Without Locking Lance

Socket (Plug) Housings

4 Position Socket (Plug) Housing

No. of	No. of Keying Housing -		Part Numbers			
Positions	Keying Options	Color	Socket (Plug) Housing	Package Quantity	Mating Pin (Cap) Housing	
4	-	Natural	1-480510-0	1,000	1-480512-0	

9 Position Socket (Plug) Housing, Matrix

No. of	No of Koving Housing		Part Numbers				
No. of Positions	Keying Options	Housing Color	Socket (Plug) Housing	Package Quantity	Mating Pin (Cap) Housing		
9	-	Natural	1-480585-0	100	1-480586-0		

Socket (Plug) Housings, In-Line

2 Position Socket (Plug) Housing, In-Line

No. of	Kouina	Hausian	Part Numbers				
No. of Positions	Keying Options	Housing Color	Socket (Plug) Housing	Package Quantity	Mating Pin (Cap) Housing		
2	-	Natural	1-350344-0	100	1-350345-0		

3 Position Socket (Plug) Housing, In-Line

No. of	of Kavian Haveing		Part Numbers				
No. of Positions	Keying Options	Housing Color	Socket (Plug) Housing	Package Quantity	Mating Pin (Cap) Housing		
3	-	Natural	1-350346-0	6,400	1-350347-0		

Socket (Plug) Housings, Matrix

No. of Positions: 9 Positions

Housing Material: Nylon

Wire Size Range: 0.5–5.0 mm² (20–12 AWG)

Product Specification: 108-1032

Application Specification: 114-1007

9 Position Socket (Plug) Housing, Matrix

No. of Keving		Hausian	Part Numbers				
Positions	Keying Options	Housing Color	Socket (Plug) Housing	Package Quantity	Mating Pin (Cap) Housing		
2	-	Natural	1-480672-0*	1,200	1-480673-0		

*) Other colors on request

18 Position Socket (Plug) Housing

No. of	No of Koving Housing		Part Numbers				
No. of Positions	Keying Options	Housing Color	Socket (Plug) Housing	Package Quantity	Mating Pin (Cap) Housing		
18	-	Natural	925451-1	200	925450-1		

Pin (Cap) Housings

4 Position Pin (Cap) Housing

No. of	o. of Keying Housing -		Keving Part Numbers				
No. of Positions	Keying Options	Color	Pin (Cap) Housing	Package Quantity	Mating Socket (Plug) Housing		
4	-	Natural	1-480512-0	1,000	1-480510-0		

9 Position Pin (Cap) Housing, Matrix

No. of	Kauina	Heusing		Part Numbers	
No. of Positions	Keying Options	Housing Color	Pin (Cap) Housing	Package Quantity	Mating Socket (Plug) Housing
9	-	Natural	1-480586-0	100	1-480585-0

Pin (Cap) Housings, In-Line

2 Position Pin (Cap) Housing, In-Line

No. of	Kouina	Heusing		Part Numbers	
No. of Positions	Keying Options	Housing Color	Pin (Cap) Housing	Package Quantity	Mating Socket (Plug) Housing
2	-	Natural	1-350345-0	100	1-350344-0

3 Position Pin (Cap) Housing, In-Line

No. of	Kasima	Handian		Part Numbers	
No. of Positions	Keying Options	Housing Color	Pin (Cap) Housing	Package Quantity	Mating Socket (Plug) Housing
3	-	Natural	1-350347-0	100	1-350346-0

Pin (Cap) Housings, Matrix

9 Position Pin (Cap) Housing, Matrix

No of Koving Housing	Part Numbers						
No. of Positions	Keying Options	Housing Color	Pin (Cap) Housing	Package Quantity	Mating Socket (Plug) Housing		
9	-	Natural	1-480673-0	1,200	1-480672-0		

18 Position Pin (Cap) Housing

No. of	K an in a	U		Part Numbers	
No. of Positions	Keying Options	Housing - Color	Pin (Cap) Housing	Package Quantity	Mating Socket (Plug) Housing
18	-	Natural	925450-1	200	925451-1

Engineering Notes

						_	_								_				
								_											
$\left + + \right $	+++			+++	+ + +	+	+++		+++	+ $+$ $+$ $+$	 $\left \cdot \right $	+++	+++	\vdash	+++			+++	+ $+$ $+$
													+++	\vdash				+	
					+ + +		+++		+ + +				+++		+++			+++	
													+++					+++	
	+++			+++	+++	++	+++		+++	+++	 			\square	++			+++	
+++	+++			+++	+		+++		+ $+$ $+$	+++		+++	+++	\vdash				+	
	+ $+$ $+$ $+$				+ $+$ $+$				+ + +	+ $+$ $+$ $+$			+++	\vdash	+			+ $+$ $+$	
	+++			+++	+ +	+	+++		+++	+++			+++		+	+++		+++	
			 												_				
			 					_											
																		++++	